NOVEMBER 17, 1983 ## **SPECIAL REPORT: CLEVER ROBOTS ARM FOR FACTORY JOBS/116** C-MOS, 3-d ICs, and power devices spark IEDM/135 Small chunks of EE-PROM personalize microcomputer chips/99 ## EECTONCS® ## Designer's casebook. ## Interfacing an EE-PROM with an 8-bit microprocessor by David V. Fansler Roche Biomedical Laboratories Inc., Burlington, N. C. With the advent of the 5-volt-only electrically erasable programmable read-only memory, single-board micro- computer systems that require nonvolatile memory no longer need a battery back-up circuit: with this circuit, Seeq Technology Inc.'s 2-K-by-8-bit EE-PROM can interface with RCA's 8-bit microprocessor CDP1802A. Although the EE-PROM's read time is fast, its write time is several magnitudes greater than the write time for a normal random-access memory. The microprocessor's address bus is multiplexed with its timing pulse, TPA, latching the upper address lines, A₈-A₁₅, into latch U₃ (see figure). While A₀-A₁₀ feed EE-PROM U₂, A₁₁-A₁₅ drive decoder U₄, which selects the eight memory banks, all of them 2-K bytes apart. The first output of the decoder, employed as an EE-PROM enable, is NORed with the memory-write signal provided by microprocessor U₁. So when a memory write **Interface.** This circuit links RCA's 8-bit microprocessor CDP1802A with Seeq's 5-volt-only electrically erasable PROM 5213H and provides the system with nonvolatile memory that needs no battery backup. Address lines A₀ through A₁₀ feed the EE-PROM, while A₁₁ through A₁₅ drive decoder U₄. The first output of this decoder covers the memory address 0000₁₆–07FF₁₆. It also the EE-PROM-enable pulse that is NORed with the memory-write signal generated by the processor. As a result, the logic generates a 1.2-ms wait pulse, which freezes all output lines when a memory write is requested. is requested, NOR gate U_{7-a} 's output goes from low to high and clocks flip-flop U_{11} . This enables the flip-flop's \overline{Q} output to generate a low wait pulse that when fed to the microprocessor causes all output lines to freeze in their current state. Also, U_{7-a} 's output simultaneously initiates presettable down-counters U_9 and U_{10} , enabling U_9 , which is clocked by U_8 's output, to generate a negative-going pulse every 200 microseconds. Counter U_{10} counts these pulses for a period of 1.2 milliseconds. U_{10} 's output resets U_{11} at the end of 1.2 ms and clears the wait timing condition. For the processor to respond to this condition, it is necessary to use a faster microprocessor, such as CDP1802A. A 470-ohm pull-up resistor connected to the EE-PROM's write-enable pin stops false write-up when the power is switched on. This resistor also acts as the pull-up for bilateral switch U₁₂, used in a pseudo-open-collector mode. So when the +5-V supply falls below 4.5 V, inverter U_{5-i}'s output goes high and the associated logic prevents premature memory write.