Chemistry

Math In Chemistry
Lesson 2
Lesson Plan
David V. Fansler

Math In Chemistry - How to Measure
Objectives: Define SI, metric prefixes, estimate measurements, scientific notation

- Math - the language of Science
- How would you measure without a ruler?
- 1795 the French adopted the Metric System which has become the Susteme Internaionale d'Unites - SI
- Standards are kept at the International Bureau of Weights and Measures in Sevres, France and in the National Institute of Science and Technology
(NIST) in Gaithersburg Maryland
- Base Quantities are length, time, mass
- Length - meter
- $1 / 10,000,000$ distance from the north pole to the equator
- Distance between two lines on a platinum-iridium bar
- Distance light travels in a vacuum in $1 / 299,792,458 \mathrm{~s}$
- Time - second
- $1 / 86,400$ of a mean solar day
- frequency of cesium-133 atom
- Mass - kilogram
- Platinum-iridium alloy cylinder
- Derived units are combinations of the base units.
- $\mathrm{m} / \mathrm{sec}$ for speed, $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$
- Which is more accurate - metric or English system?
- Accuracy is the same, metric is based on 10 making it easier to use
- SI Prefixes

Prefix	Symbol	Multiplier	Scientific Notation	Example
femto	f	1/1,000,000,000,000,000	10^{-15}	femtosecond (fs)
pico	p	1/1,000,000,000,000	10^{-12}	picometer (pm)
nano	n	1/1,000,000,000	10^{-9}	nanometer (nm)
micro	μ	1/1,000,000	10^{-6}	microfarad ($\mu \mathrm{F}$)
milli	m	1/1,000	10^{-3}	millimeter (mm)
centi	c	1/100	10^{-2}	centimeter (cm)
deci	D	1/10	10^{-1}	Deciliter (dL)
kilo	K	1000	10^{3}	Kilometer (km)
mega	M	1,000,000	10^{6}	Megabyte (Mb)
giga	G	1,000,000,000	10^{9}	Gigawatt (Gw)
tera	T	1,000,000,000,000	10^{12}	Terabyte (Tb)
-Examples				

David V. Fansler - Beddingfield High School - Page 1
Chemistry Lesson \#2 - Math In Chemistry

- $10 \mathrm{~cm}=1 \mathrm{dm}$
- $10 \mathrm{dm}=1 \mathrm{~m}$
- $1000 \mathrm{~m}=1 \mathrm{~km}$
- Scientific Notation
- Convenient way to express very large or very small numbers
- $\mathrm{Mx} 10^{n}$ where $1 \leqslant \mathrm{M}<10$ and is multiplied by a whole number power of 10
- Moving the decimal left, add to n. 1000. $=1000 \times 10^{0} \rightarrow 100 \times 10^{1}$ $\rightarrow 10 \times 10^{2} \rightarrow 1 \times 10^{3}$
- Moving the decimal right, subtract from $\mathrm{n} .0001 \rightarrow .0001 \times 10^{0} \rightarrow$ $.001 \times 10^{-1} \rightarrow .01 \times 10^{-2} \rightarrow .1 \times 10^{-3} \rightarrow 1 \times 10^{-4}$
- Avg. distance from the sun to Mars is $227,800,000,000 \mathrm{~m} \rightarrow 2.278$ $\mathrm{x} 10^{11} \mathrm{~m}$
- The mass of an electron is $0.000,000,000,000,000,000,000,000,000,000,911 \mathrm{~kg} \rightarrow 9.11 \times 10^{-31} \mathrm{~kg}$
- Some calculators show scientific notation as ME^{n}, students should always write answer in full scientific notation ($\mathrm{M} \times 10^{\mathrm{n}}$)
- Addition and Subtraction Using Scientific Notation
- If numbers have the same exponent n, then add or subtract the values of M leaving n the same.
- $4 \times 10^{8} \mathrm{~m}+3 \times 10^{8} \mathrm{~m}=7 \times 10^{8} \mathrm{~m}$
- $4.1 \times 10^{-6} \mathrm{~kg}-3.0 \times 10^{-6} \mathrm{~kg}=1.1 \times 10^{-6} \mathrm{~kg}$
- $4.01 \times 10^{6} \mathrm{~m}+1.89 \times 10^{2} \mathrm{~m}=4.01 \times 10^{6} \mathrm{~m}-.000189 \times 10^{6} \mathrm{~m}=4.01 \times$ $10^{6} \mathrm{~m}$
- Multiplication and Division Using Scientific Notation
- Multiply the value and units of M, add exponents n.
- Divide the values and units of M, subtract the exponent n of the divisor from the exponent n of the dividend
- $\left(4 \times 10^{3} \mathrm{~kg}\right)\left(5 \times 10^{11} \mathrm{~m}\right)$

$$
4 \times 5=20, \mathrm{~kg} \mathrm{x} \mathrm{~m}=\mathrm{kg} \bullet \mathrm{~m}, 3+11=14
$$

$$
20 \times 10^{14} \mathrm{~kg} \bullet \mathrm{~m}=2 \times 10^{15} \mathrm{~kg} \bullet \mathrm{~m}
$$

- $\left(8 \times 10^{6} \mathrm{~m}^{3}\right) /\left(2 \times 10^{-3} \mathrm{~m}^{2}\right)$
$8 / 2=4,6-(-3)=9,3-2=1$
$4 \times 10^{9} \mathrm{~m}$
- Converting Units - Factor-Label Method
- Convert $465 \mathrm{~g} \rightarrow \mathrm{~kg}$
- Setup a conversion factor of 1 . Knowing that $1 \mathrm{~kg}=1000 \mathrm{~g}$ then we can construct $1=1 \mathrm{~kg} / 1000 \mathrm{~g}$ or $1=1000 \mathrm{~g} / 1 \mathrm{~kg}$
- Multiplying or dividing by 1 does not change a value

David V. Fansler - Beddingfield High School - Page 2
Chemistry Lesson \#2 - Math In Chemistry

- Set up the conversion such that units cancel out:
- $465 \mathrm{~g}=465 \mathrm{~g}\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)=\frac{465 \mathrm{~g} \times 1 \mathrm{~kg}}{1000 \mathrm{~g}}=\frac{465 \mathrm{~kg}}{1000}=0.465 \mathrm{~kg}$
- If units do not work out, check your conversion factor
- Example Problems
- 1.1 cm to meters
- $1.1 \mathrm{~cm}=1.1 \mathrm{~cm}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=\frac{1.1 \mathrm{~cm} \times 1 \mathrm{~m}}{100 \mathrm{~cm}}=\frac{1.1 \mathrm{~m}}{100}=\frac{1.1 \mathrm{~m}}{10^{2}}=1.1 \times 10^{-2} \mathrm{~m}$
- or $1.1 \mathrm{~cm}=1.1 \mathrm{~cm}\left(\frac{1 \mathrm{~m}}{10^{2} \mathrm{~cm}}\right)=\frac{1.1 \mathrm{~cm} \times 1 \mathrm{~m}}{10^{2} \mathrm{~cm}}=\frac{1.1 \mathrm{~m}}{10^{2}}=1.1 \times 10^{-2} \mathrm{~m}$
- or $1.1 \mathrm{~cm}=1.1 \mathrm{~cm}\left(\frac{10^{2} \mathrm{~m}}{1 \mathrm{~cm}}\right)=\frac{1.1 \mathrm{~cm} \times 10^{2} \mathrm{~m}}{1 \mathrm{~cm}}=\frac{1.1 \times 10^{2} \mathrm{~m}}{1}=1.1 \times 10^{-2} \mathrm{~m}$
- 76.2 pm to mm

$$
\begin{aligned}
& 76.2 \mathrm{pm}=76.2 \mathrm{pm}\left(\frac{1 \mathrm{~m}}{10^{12} \mathrm{pm}}\right)\left(\frac{10^{3} \mathrm{~mm}}{1 \mathrm{~m}}\right)=\frac{76.2 \mathrm{pm} \times 1 \mathrm{~m} \times 10^{3} \mathrm{~mm}}{10^{12} \mathrm{pm} \times 1 \mathrm{~m}}= \\
& \frac{76.2 \times 10^{3} \mathrm{~mm}}{10^{12}}=76.2 \times 10^{-9} \mathrm{~mm}=7.62 \times 10^{-8} \mathrm{~mm} \\
& 0 \quad 76.2 \mathrm{pm}=76.2 \mathrm{pm}\left(\frac{1 \mathrm{~mm}}{10^{9} \mathrm{pm}}\right)=\frac{76.2 \times 1 \mathrm{~mm}}{10^{9}}=\frac{76.2 \mathrm{~mm}}{10^{9}}= \\
& 76.2 \times 10^{-9} \mathrm{~mm}=7.62 \mathrm{x} 10^{-8} \mathrm{~mm}
\end{aligned}
$$

- Precision and Accuracy
- Precision - the exactness of measurement (tolerance)
- How close do all the measurements to each other
- Accuracy - how well the results agree with a standard value
- Instrument must be calibrated to known standard
- Qualitative Measurement vs. Quantitative Measurement
- Qualitative - descriptive, non-numerical
- You feel hot - you might have a fever
- The ice cream is very cold
- Quantitative - numerical, usually with units
- The thermometer indicates that you temperature is $39.2^{\circ} \mathrm{C}$ you have a fever
- Ice cream at $-21^{\circ} \mathrm{C}$ is hard and cold
- Error
- Error $=$ accepted value - experimental value
- Can be positive or negative

David V. Fansler - Beddingfield High School - Page 3
Chemistry Lesson \#2 - Math In Chemistry

- Percent Error
- Percent error $=(\mid$ error $/$ accepted value $) \times 100 \%$
- Significant Digits - non-zero numbers
- Draw diagram of mm ruler, 8.64 bar and a cm ruler
- Note that the bar is $8.6 \mathrm{~mm}+$ a little by the mm ruler
- The little is estimated to be .4 mm
- So the length of the bar is 8.64 mm by the mm ruler -8.6 can be seen, the .04 is an estimate
- Note that the bar is $8+$ a little by the cm ruler
- The little is estimated to be .6 cm
- So the length of the bar is 8.6 cm by the cm ruler -8 . can be seen, the .6 is an estimate
- 8.64 is 3 significant figures, 8.6 is 2 significant figures
- Redraw to have the bar 8.60 in length -8.60 is 3 significant figures
- Significant Digits - zero's
- Not all 0's are significant
- Place holders are not significant
- $0.0086=2$ significant figures
- $0.00860=3$ significant figures
- $186,000=3$, maybe six - unknown since the decimal is not shown
- 186 km is $3 \mathrm{sf}, 186.000$ is 6 sf
- 1.86×10^{5} has 3 sf
- Rules for Significant Digits
- Non-zero digits are always significant
- All final 0's after the decimal point are significant
- These are 0 's after the final non-zero digit
- Zero between two other significant digits are always significant
- Zeros used solely as place holders are not significant
- The following examples have 3 significant digits
- 245 m 18.0 g 308 km 0.00623 g
- Arithmetic with Significant Digits
- An answer can never be more precise that the least precise number
- Addition \& Subtraction
- Add $24.615+3.21+6.964=34.789$
- Since 3.21 has the least number of digits to the right of the decimal, the correct answer is 34.79
- Same principle for subtraction
- Multiplication \& Division
- $3.22 \mathrm{~cm} \mathrm{x} 2.1 \mathrm{~cm}=6.762 \mathrm{~cm}^{2}->6.8 \mathrm{~cm}^{2}$
- Answer is rounded off to have the same number of significant digits as the factor with the least number of significant digits
- $36.5 \mathrm{~m} / 3.414 \mathrm{~s}=10.691 \mathrm{~m} / \mathrm{s}->10.7 \mathrm{~m} / \mathrm{s}$

David V. Fansler - Beddingfield High School - Page 4
Chemistry Lesson \#2 - Math In Chemistry

