Chemistry Math In Chemistry Lesson 2 Lesson Plan David V. Fansler

Math In Chemistry – How to Measure

Objectives: Define SI, metric prefixes, estimate measurements, scientific notation

- Math the language of Science
- How would you measure without a ruler?
- 1795 the French adopted the Metric System which has become the Susteme Internaionale d'Unites SI
- Standards are kept at the International Bureau of Weights and Measures in Sevres, France and in the National Institute of Science and Technology (NIST) in Gaithersburg Maryland
 - Base Quantities are length, time, mass
 - Length meter
 - 1/10,000,000 distance from the north pole to the equator
 - Distance between two lines on a platinum-iridium bar
 - Distance light travels in a vacuum in 1/299,792,458 s
 - \circ Time second
 - 1/86,400 of a mean solar day
 - frequency of cesium-133 atom
 - Mass kilogram
 - Platinum-iridium alloy cylinder
- Derived units are combinations of the base units.
 - \circ m/sec for speed, kg·m²/s²
 - Which is more accurate metric or English system?
 - Accuracy is the same, metric is based on 10 making it easier to use
- SI Prefixes

STITUTINGS				
Prefix	Symbol	Multiplier	Scientific	Example
			Notation	
femto	f	1/1,000,000,000,000,000	10 ⁻¹⁵	femtosecond (fs)
pico	р	1/1,000,000,000,000	10 ⁻¹²	picometer (pm)
nano	n	1/1,000,000,000	10 ⁻⁹	nanometer (nm)
micro	μ	1/1,000,000	10 ⁻⁶	microfarad (µF)
milli	m	1/1,000	10 ⁻³	millimeter (mm)
centi	c	1/100	10 ⁻²	centimeter (cm)
deci	D	1/10	10 ⁻¹	Deciliter (dL)
kilo	Κ	1000	10^{3}	Kilometer (km)
mega	М	1,000,000	10^{6}	Megabyte (Mb)
giga	G	1,000,000,000	10^{9}	Gigawatt (Gw)
tera	Т	1,000,000,000,000	10^{12}	Terabyte (Tb)

-Examples

 \circ 10 mm = 1 cm

David V. Fansler – Beddingfield High School – Page 1 Chemistry Lesson #2 - Math In Chemistry

- \circ 10 cm = 1 dm
- \circ 10 dm = 1 m
- \circ 1000 m = 1 km
- Scientific Notation
 - o Convenient way to express very large or very small numbers
 - $M \ge 10^n$ where $1 \le M < 10$ and is multiplied by a whole number power of 10
 - Moving the decimal left, add to n. 1000. = $1000 \times 10^0 \rightarrow 100 \times 10^1$ $\rightarrow 10 \ge 10^2 \rightarrow 1 \ge 10^3$
 - Moving the decimal right, subtract from n. $.0001 \rightarrow .0001 \times 10^{0} \rightarrow$ $.001 \ge 10^{-1} \rightarrow .01 \ge 10^{-2} \rightarrow .1 \ge 10^{-3} \rightarrow 1 \ge 10^{-4}$
 - Avg. distance from the sun to Mars is 227,800,000,000 m \rightarrow 2.278 $x 10^{11} m$
 - \circ The mass of an electron is
 - Some calculators show scientific notation as MEⁿ, students should always write answer in full scientific notation (M x 10ⁿ)
- Addition and Subtraction Using Scientific Notation
 - If numbers have the same exponent *n*, then add or subtract the values of M leaving *n* the same.
 - \circ 4 x 10⁸ m + 3 x 10⁸ m = 7 x 10⁸ m

 - $\circ \quad 4.1 \times 10^{-6} \text{ kg} 3.0 \times 10^{-6} \text{ kg} = 1.1 \times 10^{-6} \text{ kg}$ $\circ \quad 4.01 \times 10^{6} \text{ m} + 1.89 \times 10^{2} \text{ m} = 4.01 \times 10^{6} \text{ m} .000189 \times 10^{6} \text{ m} = 4.01 \times 10^{6} \text{ m}$ $10^{6} \,\mathrm{m}$
- Multiplication and Division Using Scientific Notation -
 - Multiply the value and units of M, add exponents *n*.
 - Divide the values and units of M, subtract the exponent n of the divisor from the exponent *n* of the dividend
 - \circ (4 x10³ kg) (5 x 10¹¹ m) $4 \ge 5 = 20$, kg x m = kg•m, 3 + 11 = 14 $20 \ge 10^{14} \text{ kg} \cdot \text{m} = 2 \ge 10^{15} \text{ kg} \cdot \text{m}$
 - \circ (8 x 10⁶ m³)/(2 x 10⁻³ m²) 8/2 = 4, 6 - (-3) = 9, 3 - 2 = 1 $4 \times 10^9 \text{ m}$
- Converting Units Factor-Label Method
 - \circ Convert 465g \rightarrow kg
 - Setup a conversion factor of 1. Knowing that 1 kg = 1000 g then we can construct 1 = 1 kg/1000 g or 1 = 1000 g/1 kg
 - Multiplying or dividing by 1 does not change a value 0

David V. Fansler - Beddingfield High School - Page 2 Chemistry Lesson #2 - Math In Chemistry

• Set up the conversion such that units cancel out:

$$\circ \quad 465g = 465g \left(\frac{1kg}{1000g}\right) = \frac{465g \times 1kg}{1000g} = \frac{465kg}{1000} = 0.465kg$$

- If units do not work out, check your conversion factor
- Example Problems
 - 1.1 cm to meters • 1.1 cm (1m) 1.1 cm $\times 1m$ 1.1 m 1.1 m 1.1 m

$$1.1cm = 1.1cm \left(\frac{1}{100cm} \right) = \frac{1}{100cm} = \frac{1}{100} = \frac{1}{10^2} = 1.1x10^{-2} m$$

o or $1.1cm = 1.1cm \left(\frac{1m}{10^2 cm} \right) = \frac{1.1cm \times 1m}{10^2 cm} = \frac{1.1m}{10^2} = 1.1x10^{-2} m$
o or $1.1cm = 1.1cm \left(\frac{10^2 m}{1cm} \right) = \frac{1.1cm \times 10^2 m}{1cm} = \frac{1.1x10^2 m}{1} = 1.1x10^{-2} m$

• 76.2 pm to mm

$$76.2 \, pm = 76.2 \, pm \left(\frac{1m}{10^{12} \, pm}\right) \left(\frac{10^3 \, mm}{1m}\right) = \frac{76.2 \, pm \times 1m \times 10^3 \, mm}{10^{12} \, pm \times 1m} = \frac{76.2 \times 10^3 \, mm}{10^{12}} = 76.2 \times 10^{-9} \, mm = 7.62 \times 10^{-8} \, mm$$

$$\circ 76.2 \, pm = 76.2 \, pm \left(\frac{1mm}{10^9 \, pm}\right) = \frac{76.2 \times 1mm}{10^9} = \frac{76.2mm}{10^9} = \frac{76.2mm}{10$$

- Precision and Accuracy
 - Precision the exactness of measurement (tolerance)
 - How close do all the measurements to each other
 - Accuracy how well the results agree with a standard value
 - Instrument must be calibrated to known standard
- Qualitative Measurement vs. Quantitative Measurement
 - Qualitative descriptive, non-numerical
 - You feel hot you might have a fever
 - The ice cream is very cold
 - Quantitative numerical, usually with units
 - The thermometer indicates that you temperature is 39.2°C you have a fever
 - Ice cream at -21°C is hard and cold
- Error
 - Error = accepted value experimental value
 - Can be positive or negative
 - David V. Fansler Beddingfield High School Page 3 Chemistry Lesson #2 - Math In Chemistry

- Percent Error
 - Percent error =(|error|/accepted value) x 100%
- Significant Digits non-zero numbers
 - Draw diagram of mm ruler, 8.64 bar and a cm ruler
 - \circ Note that the bar is 8.6 mm + a little by the mm ruler
 - The little is estimated to be .4 mm
 - \circ So the length of the bar is 8.64 mm by the mm ruler 8.6 can be seen, the .04 is an estimate
 - \circ Note that the bar is 8 + a little by the cm ruler
 - The little is estimated to be .6 cm
 - So the length of the bar is 8.6 cm by the cm ruler 8. can be seen, the .6 is an estimate
 - 8.64 is 3 significant figures, 8.6 is 2 significant figures
 - \circ Redraw to have the bar 8.60 in length 8.60 is 3 significant figures
- Significant Digits zero's
 - Not all 0's are significant
 - Place holders are not significant
 - 0.0086 = 2 significant figures
 - 0.00860 = 3 significant figures
 - 186,000 = 3, maybe six unknown since the decimal is not shown
 - 186 km is 3sf, 186.000 is 6sf
 - 1.86×10^5 has 3 sf
- Rules for Significant Digits
 - Non-zero digits are always significant
 - All final 0's after the decimal point are significant
 - These are 0's after the final non-zero digit
 - o Zero between two other significant digits are always significant
 - Zeros used solely as place holders are not significant
- The following examples have 3 significant digits
 - o 245 m 18.0 g 308 km 0.00623 g
- Arithmetic with Significant Digits
 - An answer can never be more precise that the least precise number
- Addition & Subtraction
 - $\circ \quad \text{Add } 24.615 + 3.21 + 6.964 = 34.789$
 - Since 3.21 has the least number of digits to the right of the decimal, the correct answer is 34.79
 - Same principle for subtraction
- Multiplication & Division
 - \circ 3.22 cm x 2.1 cm = 6.762 cm² ->6.8 cm²
 - Answer is rounded off to have the same number of significant digits as the factor with the least number of significant digits
 - \circ 36.5 m / 3.414s = 10.691 m/s -> 10.7 m/s

David V. Fansler – Beddingfield High School – Page 4 Chemistry Lesson #2 - Math In Chemistry