Physics

Lesson Plan #2 A Mathematical Toolkit David V. Fansler Beddingfield High School

The Measures of Science

Objectives: Define SI, metric prefixes, estimate measurements, scientific notation

- Math the language of Physics
- How would you measure without a ruler?
- 1795 the French adopted the Metric System which has become the Susteme Internaionale d'Unites SI
- Standards are kept at the International Bureau of Weights and Measures in Sevres, France and in the National Institute of Science and Technology (NIST) in Gaithersburg Maryland
- Base Quantities are length, time, mass
 - o Length meter
 - 1/10,000,000 distance from the north pole to the equator
 - Distance between two lines on a platinum-iridium bar
 - Distance light travels in a vacuum in 1/299,792,458 s
 - Time second
 - 1/86,400 of a mean solar day
 - frequency of cesium-133 atom
 - Mass kilogram
 - Platinum-iridium alloy cylinder
- Derived units are combinations of the base units.
 - o m/sec for speed, $kg \cdot m^2/s^2$
- Which is more accurate metric or English system?
 - o Accuracy is the same, metric is based on 10 making it easier to use
- SI Prefixes

Prefix	Symbol	Multiplier	Scientific	Example
			Notation	
femto	f	1/1,000,000,000,000,000	10^{-15}	femtosecond (fs)
pico	p	1/1,000,000,000,000	10^{-12}	picometer (pm)
nano	n	1/1,000,000,000	10 ⁻⁹	nanometer (nm)
micro	μ	1/1,000,000	10 ⁻⁶	microfarad (μF)
milli	m	1/1,000	10 ⁻³	millimeter (mm)
centi	c	1/100	10 ⁻²	centimeter (cm)
deci	D	1/10	10 ⁻¹	Deciliter (dL)
kilo	K	1000	10^{3}	Kilometer (km)
mega	M	1,000,000	10^{6}	Megabyte (Mb)
giga	G	1,000,000,000	109	Gigawatt (Gw)
tera	T	1,000,000,000,000	10^{12}	Terabyte (Tb)

-Examples

- 10 mm = 1 cm
- 10 cm = 1 dm
- \circ 10 dm = 1 m
- \circ 1000 m = 1 km

Scientific Notation

- o Convenient way to express very large or very small numbers
- o M x 10^n where $1 \le M < 10$ and is multiplied by a whole number power of 10
- o Moving the decimal left, add to n. $1000 = 1000 \times 10^0 \rightarrow 100 \times 10^1$ $\rightarrow 10 \times 10^2 \rightarrow 1 \times 10^3$
- o Moving the decimal right, subtract from n. $.0001 \rightarrow .0001 \times 10^{0} \rightarrow$ $.001 \times 10^{-1} \rightarrow .01 \times 10^{-2} \rightarrow .1 \times 10^{-3} \rightarrow 1 \times 10^{-4}$
- \circ Avg. distance from the sun to Mars is 227,800,000,000 m \rightarrow 2.278 $\times 10^{11} \, \text{m}$
- The mass of an electron is
- o Some calculators show scientific notation as MEⁿ, students should always write answer in full scientific notation (M x 10ⁿ)

Addition and Subtraction Using Scientific Notation

- \circ If numbers have the same exponent n, then add or subtract the values of M leaving *n* the same.
- \circ 4 x 10⁸ m + 3 x 10⁸ m = 7 x 10⁸ m
- 0 $4.1 \times 10^{-6} \text{ kg} 3.0 \times 10^{-6} \text{ kg} = 1.1 \times 10^{-6} \text{ kg}$ 0 $4.01 \times 10^{6} \text{ m} + 1.89 \times 10^{2} \text{ m} = 4.01 \times 10^{6} \text{ m} .000189 \times 10^{6} \text{ m} = 4.01 \times 10^{6} \text{ m}$ 10^6 m – do example of 240,00,000 +27 on calculator and on board

Multiplication and Division Using Scientific Notation

- \circ Multiply the value and units of M, add exponents n.
- o Divide the values and units of M, subtract the exponent n of the divisor from the exponent n of the dividend
- \circ (4 x10³ kg) (5 x 10¹¹ m) $4 \times 5 = 20$, kg x m = kg•m, 3 + 11 = 14 $20 \times 10^{14} \text{ kg} \cdot \text{m} = 2 \times 10^{15} \text{ kg} \cdot \text{m}$
- \circ $(8 \times 10^6 \text{ m}^3)/(2 \times 10^{-3} \text{ m}^2)$ 8/2 = 4, 6-(-3) = 9, 3-2 = 1 $4 \times 10^9 \, \text{m}$

Converting Units – Factor-Label Method

- \circ Convert $465g \rightarrow kg$
- \circ Setup a conversion factor of 1. Knowing that 1 kg = 1000g then we can construct 1 = 1 kg/1000 g or 1 = 1000 g/1 kg
- o Multiplying or dividing by 1 does not change a value
- Set up the conversion such that units cancel out:

David V. Fansler – Beddingfield High School - Page 2 Lesson Plan #2 – A Mathematical Toolkit

$$0 \quad 465g = 465g \left(\frac{1kg}{1000g}\right) = \frac{465g \times 1kg}{1000g} = \frac{465kg}{1000} = 0.465kg$$

- o If units do not work out, check your conversion factor
- Example Problems
 - o 1.1 cm to meters

$$0 \quad 1.1cm = 1.1cm \left(\frac{1m}{100cm}\right) = \frac{1.1cm \times 1m}{100cm} = \frac{1.1m}{100} = \frac{1.1m}{10^2} = 1.1x10^{-2} m$$

o or
$$1.1cm = 1.1cm \left(\frac{1m}{10^2 cm} \right) = \frac{1.1cm \times 1m}{10^2 cm} = \frac{1.1m}{10^2} = 1.1x10^{-2} m$$

o or
$$1.1cm = 1.1cm \left(\frac{10^2 m}{1cm} \right) = \frac{1.1cm \times 10^2 m}{1cm} = \frac{1.1x10^2 m}{1} = 1.1x10^{-2} m$$

o 76.2 pm to mm

$$76.2 pm = 76.2 pm \left(\frac{1m}{10^{12} pm}\right) \left(\frac{10^{3} mm}{1m}\right) = \frac{76.2 pm \times 1m \times 10^{3} mm}{10^{12} pm \times 1m} = \frac{76.2 \times 10^{3} mm}{10^{12}} = 76.2 \times 10^{-9} mm = 7.62 \times 10^{-8} mm$$

$$76.2 pm = 76.2 pm \left(\frac{1mm}{10^9 pm}\right) = \frac{76.2 \times 1mm}{10^9} = \frac{76.2 mm}{10^9} = \frac{76.2 \times 10^{-9} mm}$$

- Precision and Accuracy
 - Precision the exactness of measurement (tolerance)
 - o Precision can be ½ the smallest division on the scale
 - Using round off to determine ½
 - On a typical meter stick, 1mm is the smallest division, therefore .5 mm is best precision
 - On a micrometer the smallest division is .01 mm, therefore .005 mm is the best precision
 - Accuracy how well the results agree with a standard value
 - Instrument must be calibrated to known standard
- Error
 - Error = accepted value experimental value
 - Can be positive or negative
- Percent Error
 - o Percent error = (|error|/accepted value) x 100%
- Significant Digits non-zero numbers
 - o Draw diagram of mm ruler, 8.64 cm bar and a cm ruler

David V. Fansler – Beddingfield High School - Page 3

Lesson Plan #2 – A Mathematical Toolkit

- O Note that the bar is 8.6 mm + a little by the mm ruler
- o The little is estimated to be .4 mm
- \circ So the length of the bar is 8.64 mm by the mm ruler 8.6 can be seen, the .04 is an estimate
- \circ Note that the bar is 8 + a little by the cm ruler
- o The little is estimated to be .6 cm
- So the length of the bar is 8.6 cm by the cm ruler 8. can be seen, the .6 is an estimate
- o 8.64 is 3 significant figures, 8.6 is 2 significant figures
- \circ Redraw to have the bar 8.60 in length 8.60 is 3 significant figures
- Significant Digits zero's
 - o Not all 0's are significant
 - o Place holders are not significant
 - 0.0086 = 2 significant figures
 - 0.00860 = 3 significant figures
 - 186,000 = 3, maybe six unknown since the decimal is not shown
 - 186 km is 3sf, 186.000 is 6sf
 - \blacksquare 1.86 x 10⁵ has 3 sf
- Rules for Significant Digits
 - Non-zero digits are always significant
 - o All final 0's after the decimal point are significant
 - These are 0's after the final non-zero digit
 - o Zero between two other significant digits are always significant
 - o Zeros used solely as place holders are not significant
- The following examples have 3 significant digits
 - o 245 m 18.0 g 308 km 0.00623 g
- Arithmetic with Significant Digits
 - An answer can never be more precise that the least precise number
- Addition & Subtraction
 - \circ Add 24.615 + 3.21 + 6.964 = 34.789
 - Since 3.21 has the least number of digits to the right of the decimal, the correct answer is 34.79
 - Same principle for subtraction
- Multiplication & Division
 - \circ 3.22 cm x 2.1 cm = 6.762 cm² ->6.8 cm²
 - Answer is rounded off to have the same number of significant digits as the factor with the least number of significant digits
 - \circ 36.5 m / 3.414s = 10.691 m/s -> 10.7 m/s