Physics

Lesson Plan #3 Describing Motion David V. Fansler Beddingfield High School

Picturing Motion

Objective – Draw and use motion diagrams to describe motion; Use a particle model to represent a moving object.

Linear Motion

- 4 types of linear motion
 - At rest, speeding up, constant speed, slowing down
 - Draw stick diagram of runner doing each
- Particle Model instead of the entire moving object considered, just a point at the center of mass
 - Draw the above diagrams again using a particle model

Where and When?

Objective – Choosing Coordinates, Differentiate between Scalar & Vector; Displacement Vector; Signs of vector quantities

- Coordinate System
 - Arbitrarily chosen to fit your needs
 - Show origin on left and right of runner start
 - Origin where variables are 0
 - One dimension motion requires one axis (x)
 - \circ Two dimension motion requires two axis (x,y)
 - Distance between origin and a point is a **position vector**
 - You can have negative vectors (time, distance) position prior the start of a race or origin
- Vectors & Scalars
 - Scalar quantity that expresses magnitude only (time, mass, temperature)
 - Represented by a simple letter (t, m, T)
 - Vector magnitude and direction
 - Draw a map of Wilson, Raleigh, Durham, Oriental
 - Draw an line with arrow to show distance and direction
 - Represented by a letter with an arrow above it, \vec{v} for velocity or \vec{a} for acceleration, or bold face letters
- Displacement Vector and Time Intervals
 - Motion depends on scalar quantity time and the vector quantity displacement

David V. Fansler – Beddingfield High School - Page 1 Lesson Plan #3 - Describing Motion

- Displacement defines the distance and direction between two points
- For a runner, you have the start line and the finish line $(d_0 \& d_1)$, so $\Delta d = d_1 d_0$
- In addition you have time interval t_0 (start) and t_1 (end) so $\Delta t = t_1 t_0$

- In the above diagram for the runner for the 1st 50 meters
 - $\circ \Delta d = d_1 d_0$ where $d_0 =$ and $d_1 = 50$ m therefore $\Delta d = 50$ m
 - $\circ \Delta t = t_1 t_0$ where $t_0 = 0s$ and $t_1 = 6s$ therefore $\Delta t = 6s$
 - Now we can draw the displacement vector

The length of the displacement vector is the distance, which is a scalar quantity

Tail of arrow is at the earlier position and head at the later position

- Velocity and Acceleration

Objectives – Define velocity and acceleration operationally, Relate the direction and magnitude of velocity and acceleration vectors to the motion of objects, Create pictorial and physical models for solving motion problems.

- Velocity

0

- How do you measure your speed while driving? (miles/hour)
- In unit terms that is distance/time or $\Delta d/\Delta t$
- Example of a person running long distance measured over 100m
- This is a vector in the same direction as the displacement
- Average velocity is $\overline{v} \equiv \left(\frac{\Delta d}{\Delta t}\right) = \left(\frac{d_1 d_0}{t_1 t_0}\right)$ where \equiv means the left

hand side of the equation is defined by the right hand side – note that \overline{v} is over a specific for a specific time interval over the distance covered in that time interval.

- Average speed is $\Delta d/\Delta t$, but for the total distance traveled.
 - If you took a trip from here to the RBC Center to watch the Hurricanes play, your avg speed would be the distance from Wilson to the RBC Center/how long it took you to get there say 88km/60 minutes = 88km/hr
 - If you only measured the interval from I-95 until you entered Knightdale then you would have traveled 40km in
- David V. Fansler Beddingfield High School Page 2 Lesson Plan #3 - Describing Motion

21 minutes, so your avg vel would be 40km/21min = 1.9 km/min = 114 km/hr

- Instantaneous velocity
 - In the trip from I-95 to Knightdale our speed would have change some, as well as our direction – we may have made a wrong turn and gone the wrong direction before turning around – so average speed or velocity is just that, an average with no regard to what happened in the time interval
 - If you were to measure the speed and direction of an object at a particular instant in time, you would have the instantaneous velocity – noted as simply velocity with a symbol of v
- Average Velocity Motion Diagrams
 - Average velocity (v) vector has the same direction as the displacement vector, not the same units (m vs. m/s)
 - Using $\overline{v} = \left(\frac{\Delta d}{\Delta t}\right)$, then $\Delta d = \overline{v} \Delta t$
 - Since $\Delta d = d_1 d_0$ then $d1 d_0 = \overline{v}\Delta t$ or $d_1 = d_0 + \overline{v}\Delta t$ which shows that over the interval of time Δt , the average velocity of an object results in a change of position equal to $\overline{v}\Delta t$
 - No avg velocity no change of position

• Example – golf putt

Sign of average velocity depends on the chosen coordinate system

- Acceleration
 - In the above figure, the shorten average velocity vectors indicate that the average velocity was changing from one time interval to

David V. Fansler – Beddingfield High School - Page 3 Lesson Plan #3 - Describing Motion the next – this would indicate that the instantaneous velocity is changing also

- An object whose velocity is changing is said to be accelerating
- Stated in terms of change of velocity per time unit

• Units – velocity is m/s, acceleration is $m/s/s = \frac{m}{s^2}$

Average velocity is increasing in time intervals 1, 2, 3 therefore acceleration is positive

Average velocity is constant in time intervals 4,5,6,7, therefore acceleration is 0

Average velocity is decreasing in time intervals 8,9,10, therefore acceleration is negative