Physics

Lesson Plan #4 Vector Addition David V. Fansler Beddingfield High School

Properties of Vectors

Objectives: How to represent vector quantities graphically and algebraically; Determine the sum of vectors both graphically and algebraically

- Graphical Representation
 - o Learned in previous chapter
 - Arrow with head indicate direction
 - Length to indicate magnitude
- Algebraic Representation
 - Displacement + direction in words
 - d = 50 km, southwest
- Resultant Vector
 - Sum of two or more vectors

- Graphical Addition of Vectors
 - Using the above example and graph paper, ruler and protractor
 - Draw 5km E, 4km N and 5km E, draw Resultant
 - Draw 1km N, 8km E, 1km N, 2km E, 2km N, draw resultant
 - Magnitude of resultant is found by measuring the length of the resultant
 - Direction is found using protractor
 - Answer would be 10.77 km 24° north of east
- Special cases
 - If right angles are involved then the Pythagorean theorem can be used -R2 = A2 + B2

David V. Fansler – Beddingfield High School - Page 1 Lesson Plan #4 - Vector Addition

• Where there is no right angle the Law of Cosines can be used – $R^2 = A^2 + B^2 - 2ABcos\theta$

- Subtracting Vectors
 - Vectors can be multiplied by scalar numbers
 - Changes the magnitude not the direction
 - Unless you multiply by a negative number
 - You can use this to subtract 2 vectors

- o Relative Velocities
 - What motions are we under going sitting in the classroom?
 - Earth rotates around it's axis
 - Earth revolves around the sun
 - The solar system rotates around the center of the galaxy
 - The galaxy is in motion with a local group of galaxies
 - The universe is expanding
 - You can use graphical addition of vectors to solve relative motion problems
 - You are traveling on a school bus that is moving at 8 m/s.
 You walk toward the front at 3m/s (relative to the bus)
 - What is your speed relative to the street?

- Concept can be used in two dimensions
 - Take a sailboat a side wind will move the boat forward, but also move the boat slightly sideways. To reach a particular destination, the skipper must steer a course that will counter act the sliding.

• You can add vectors at arbitrary angles using the graphical method

Components of Vectors

Objectives: Establish a coordinate system in problems involving vector quantities; Use the process of resolution of vectors to find the components of vectors; Determine algebraically the sum of 2 or more vectors by adding the components of the vectors.

- Choosing a Coordinate System
 - Using an x-y coordinate system there is no right way to set it up (as long as the axis are at right angles to each other)
 - By convention, x increases as it moves to the right from the origin, and y is 90° counterclockwise from the x axis and increases as y moves away from the origin
 - o On maps, x points East and y points North

David V. Fansler – Beddingfield High School - Page 3 Lesson Plan #4 - Vector Addition

- On problems involving motion through the air, y is the vertical motion and x is the horizontal motion
- \circ On problems on an incline, +x is set in the direction of motion and y perpendicular to the x axis
- Components
 - A vector can be broken up into x & y components

- Here vector A is resolved into two component vectors, Ax which is parallel to the x axis and Ay which is parallel to the y axis
- $\circ \quad A = Ax + Ay$
- Vector resolution is the process of breaking a vector into is components. (*Ax* & *Ay* are call components)
- Algebraic calculations use only the components of vectors not the vectors themselves
- o Use trigonometry to find the components

•
$$A_x = A\cos\theta \rightarrow \cos\theta = \frac{adjacent \cdot side}{hypotenuse} = \frac{A_x}{A}$$

- $A_y = A\sin\theta \rightarrow \sin\theta = \frac{opposite \cdot side}{hypotenuse} = \frac{A_y}{A}$
- When the angle that a vector makes with the x axis is larger than 90° (vector is in 3rd or 4th quadrant) the sign of one or more components is negative.

David V. Fansler – Beddingfield High School - Page 4 Lesson Plan #4 - Vector Addition

▲ y	
2^{nd} Quad Ax < 0 Ay > 0	$1^{st} QuadAx > 0Ay > 0$
Ax < 0 Ay < 0 3^{rd} Quad	Ax > 0 Ay < 0 $4^{th} Quad$

- o Algebraic Addition of Vectors
 - Two or more vectors may be added by first resolving each vector into it's x & y component
 - Add the x components together, add the y components together
 - For a right triangle, use the Pythagorean theorem

•
$$R^2 = R_x^2 + R_y^2$$

• The angle or direction of the resultant can be found by $\tan \theta = \frac{R_y}{R_y}$

$$\tan \theta = \frac{1}{R_x}$$

David V. Fansler – Beddingfield High School - Page 5 Lesson Plan #4 - Vector Addition